TP Linux 2 : la ligne de commandes

I Le standard POSIX

Lors du dernier cours, nous avons présenté les différents s

systemes d’exploitation (Windows, Linux, Android, MacOs, EEI " . :
iOs). Malgré leur différence, ils possédent (sauf windows 10) Mac O5
quelquechose en commun : le standard POSIX. Ce standard
définit pour tous les systemes d’exploitation les programmes de : P
base (lecture et écriture des fichiers, accéder au réseau, ...) |OS ’

permettant d’utiliser le systeme. Le standard POSIX s’inspire

largement des systemes d’exploitation UNIX (Linux, MacOS, iOs, Android). Windows 10 n’est pas
compatible POSIX car historiquement Windows est un dérivé du systeme d’exploitation MS-DOS
et pas d’UNIX.

IT Utilisateurs et groupes

Les systemes POSIX sont congus pour étre multi-utilisateurs

(comme au lycée ou 1 ordinateur peut étre utilisé par plusieurs éléves
différents, chaque éleve ayant ses dossiers et fichiers). Chaque
utilisateur possede un identifiant de connexion (login) comme
prénom.nom par exemple. Y est associé un mot de passe (comme
LoSC59 !) permettant d’identifier 1’utilisateur. Toutes ces données
(identifiant, mot de passe, dossiers, fichiers) constituent le compte de
’utilisateur. Lorsq’un utilisateur s’identifie, le systeme démarre alors
une interface utilisateur personnalisée. L’utilisateur commence alors
une session. Le systéme associe un nombre appelé UID (User IDentifier) a 1’identifiant.

Rogerio a oublié son mot de passe
Ubuntu

Vérification : allez sur : https://cocalc.com/doc/terminal.html
puis faites : Run Terminal Now

A moins que vous ayez déja un compte. Dans ce cas, créer un projet. Ensuite, faites New puis
->Terminal

Dans I’invite de commande, apreés le $, tapez : id
réponse : uid=2001(user) gid=2001(user) groups=2001(user)

L’utilisateur a pour UID : 2001.

GID signifie Groupe Identifier donc identifiant du groupe. L’administrateur de 1’ordinateur (celui
qui a tous les droits ou presque!) peut créer des groupes d’utilisateurs. Un utilisateur appartient a un
groupe principal et a des groupes secondaires.

D’apres la réponse précédente, j’appartiens seulement au groupe 2001 (user).
Par contre, imaginons cette réponse :

alice$ id
uid=1001(alice) gid=2002(nsi) groups=2002(nsi),2003(premiere)

Dans ce cas, Alice a pour groupe principal 2002. groups correspond a tous les groupes auxquels elle
appartient donc 2002(nsi) et 2003(premiere)

Pourquoi I’administrateur définit-il des groupes d’utilisateurs de 1’ordinateur ? On va voir qu’en
procédant ainsi, I’administrateur peut attribuer des permissions (lire, écrire, exécuter) sur les
dossiers et les fichiers a certains groupes et pas a d’autres.

https://cocalc.com/doc/terminal.html

L’administrateur sous Linux est appelé root dont I’UID et le GID vaut 0. C’est le super-utilisateur.
Quand vous installez Linux sur un ordi, vous créez un mot de passe. Dans |’invite de commande, si
I’on tape : " sudo -s " pour passer en mode super-utilisateur, le mot de passe est demandé : si vous
’avez alors le systéme ouvre une session root. Dans ce type de session, vous avez beaucoup de
droits : en particulier, vous pouvez créer des groupes, ajouter des utilisateurs, en enlever, etc.

@ root@MyUbuntu: ~

Vous pouvez essayez de taper sudo su dans le terminal
de cocalc : vous serez remis a votre place de simple
"user ".

III Permissions et propriétés des fichiers (Is -1)

Le systéme d’exploitation associe a chaque fichier ou dossier I’UID et le GID de son propriétaire.
Le systéme permet aussi de définir pour un fichier ou dossier des permissions pour le propriétaire,
le groupe propriétaire et les autres utilisateurs.

Comment voir les permissions d’un fichier ?

Il faut utiliser la commande Is avec I’option -1. Vérifiez que vous étes bien dans /home/user en
tapant pwd aprés $ pour avoir le répertoire courant. Tapez donc : Is -1 apres $

Vous voyez cette réponse :

drwxr-xr-x 2 user user 2 May 29 13:34 permissions
-rw-r--1-- 1 user user 0 May 31 13:22 permissions.term

Vous avez sans doute un autre nom que " permissions ".

Sur le dossier " permissions ", les permissions sont ce charabia : drwxr-xr-x
d signifie qu’il s’agit d’un dossier (sinon — signifie que c’est un fichier). Ensuite, il faut lire les
symboles suivants (r,w ou x) par bloc de 3 : rwx r-x r-x

r : droit de lire (read)
w : droit d’écrire (write)
X : droit d’exécuter

- : permission refusée

le premier groupe de 3 symboles indique les permissions du propriétaire sur le fichier ou dossier.
"rwx " pour cet exemple, le proriétaire a tous les droits.

Le deuxiéme groupe de 3 symboles indique les permissions du groupe propriétaire sur le fichier ou
dossier. " r-x " pour cet exemple, le groupe proriétaire peut lire et exécuter ce dossier mais pas d’y

écrire (pas le droit d’y créer des fichiers ou d’en supprimer ou de les renommer).

Le troisiéme groupe de 3 symboles indique les permissions pour tous les autres utilisateurs sur le
fichier ou dossier. " r-x " pour cet exemple, les autres utilisateurs peuvent lire et exécuter ce dossier.

IV Application : permissions sur un fichier python

Nous allon créer un programme bidon en python et voir quelles sont les permissions sur ce fichier.
Nous allons exécuter ce programme python depuis la console de cocalc.

Toujours dans /home/user du terminal tapez : nano. L’éditeur de texte s’ouvre. Tapez ce super
programme :

#1/usr/bin/python
print("cool linux")

puis Ctrl O puis écrire le nom du fichier : cool.py puis entrée au clavier puis Ctrl X

Remarque : la ligne #!/usr/bin/python permet d’exécuter ce programme en console (si on en a le
droit!) en donnant le chemin vers le dossier ou se trouve python.

Vérifiez que votre fichier a bien été créé et affichons les permissions, tapez : Is -1
-rw-r--1-- 1 user user 39 May 31 14:23 cool.py

C’est bien un fichier (- au début). Pour le propriétaire : permissions de lire et écrire, pas d’exécuter.
Pour le groupe et les autres, permisssions : lire seulement. C’est dommage ! On ne peut pas
exécuter notre programme en console. Essayons quand méme. Tapez : ./cool.py qui correspond au
RUN de windows !

Réponse : bash: ./cool.py: Permission denied

Bon, c’est confirmé : on n’a pas la permission de I’exécuter. On en reste pas la ! On va se I’octroyer
ce droit !

V Modifier les permissions CHMOD
1) Exemple

Une commande Linux permet de modifier les permissions, il s’agit de chmod (change mode). Par
exemple, ici on veut ajouter (+) a I’utilisateur (u) la permission d’exécuter (x) le fichier cool.py. Il
faut taper :

chmod u+x cool.py

Essayez ! Puis faites Is -1. Normalement, les permissions sont devenues :
-rwxr--r-- 1 user user 39 May 31 14:23 cool.py

Le x est bien apparu. Donc, maintenant : ./cool.py devrait marcher. Essayez. S’affiche :
cool linux

2) Généralisation
La commande chmod s’écrit : chmod cmp fichier-dossier

c étant soit u (utilisateur) soit g (groupe) soit o (autres) soit a (tous)
m étant soit + (ajouter des droits) soit — (retirer des droits)
p étant soit r soit w soit X

Exemple : si vous faites :

~$ chmod g+w,o-r cool.py

Vous obtenez :

-rwx rw- --- 1 user user 39 May 31 14:23 cool.py

On a ajouté le droit d’écrire le fichier cool.py au groupe et retiré le droit de lire aux autres.
VI Encore quelques commandes (cp, mv et redirection >)

Pour copier un fichier dans un dossier : cp nom_fichier nom_dossier
Pour renommer un fichier : mv nom_fichier nouveau_nom_fichier

Pour rediriger le résultat d’une commande dans un fichier texte :

Is /home/user/*[.py] > fichiers_python.txt.

Traduction:fait la liste des noms de fichiers dont le nom contient n’importe quel quel caractére suivi
de " .py " et écrit cette liste dans le fichier fichiers_python.txt. Essayez et vérifiez avec nano.

