Encodage des textes
Pour écrire du texte brut (c’est-a-dire sans aucun effet) on peut utiliser Notepad++ (windows), TextEdit
(MacOs), Kwrite ou Geany (Linux).
Fonctions Pyhton utiles : ord(), bin(), chr().

1 Norme ASCII

Avant 1960, chaque systéme codait & sa maniére les informations (dont les caractéres) ce qui se traduisait
par d’énormes problémes de compatibilité et d’échange.
En 1960, l'organisation internationale de normalisation (ISO) décide de créer la norme ASCII (American
Standard Code for Information Interchange).
A chaque caractére est associé un nombre binaire sur 8 bits (1 octet).
Seuls 7 bits sont utilisés pour coder un caractére.
Les caractéres en Ascii sont ainsi des octets dont le bit de poids fort est 0.
Avec 7 bits il est possible de coder jusqu’a 27=128 caractéres ce qui est largement suffisant pour un texte écrit
en langue anglaise (pas d’accents et autres lettres particuliéres) :

Decimal Hex Char Decimal Hex Char Decimal Hex Char Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ‘ 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4aA J 106 6A i
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B Kk
12 C [FORM FEED] 44 2C , 76 4c L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 ZIE 0 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 \; 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A Y4 122 7A z
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C I
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F 127 7F [DEL]

Ainsi la lettre A est associée a 6519 = 010000015 et la lettre a est associée a 9719 = 011000015.
On retrouve ces valeurs avec Python :

>>>ord ('A”)
65

>>>bin (65)

"0b1000001°

Ezemple : La chaine de caractéres "Yes!" se code 89 101 115 32 33 en décimal soit 01011001 01100101 01110011
00100000 00100001 en binaire.

2 Norme Latin

L’ Ascii est idéal pour les pays anglo-saxons. Cependant, nous avons dans nos pays européens des caractéres
particuliers, comme ¢ ou les caractéres accentués. Pour coder ces caractéres, on a étendu 1’Ascii & la norme
ISO 8859-1 dit Latin-1. Le huitiéme bit de chaque octet a ainsi été utilisé. Plusieurs versions de cette norme
ont été créées dont la derniére, Latin-9, comprenant le symbole de I'euro €.

Probléme, cette norme restait encore insuffisante au niveau international.

3 Norme Unicode

Pour résoudre ce probléme, en 1991 une nouvelle norme a vu le jour : Unicode. Unicode a pour ambition
de rassembler tous les caractéres existant afin qu’un texte codé dans cette norme puisse étre lu dans n’importe

quel pays.

Unicode est uniquement une table qui regroupe tous les caractéres existant au monde, il ne s’occupe pas
de la facon dont les caractéres sont codés dans la machine.
Unicode accepte plusieurs systemes de codage : UTF-8, UTF-16, UTF-32. Le plus utilisé, notamment sur le
Web, est UTF-8.

UTF-8 utilise un nombre variable d’octets : les caractéres "classiques" (les plus couramment utilisés) sont
codés sur un octet, alors que des caractéres "moins classiques" sont codés sur un nombre d’octets plus impor-
tant (jusqu’a 4 octets). Un des avantages d’UTF-8 c’est qu’il est totalement compatible avec la norme ASCII :
Les caractéres Unicode codés avec UTF-8 ont exactement le méme code que les mémes caractéres en ASCII.

Avec Python, UTF-8 est utilisé par défaut, et on a :
>>> ord(’E’)
202

On se retrouve donc avec un octet supérieur a 127 (le bit de poids fort est 1) : 11001010

En Python, la fonction chr() permet de traduire un code en caractére :
>>> chr(202)
E

Si on dispose du code binaire, on utilisera : chr(0b00100001) qui donne ’V’

UTF-16 et UTF-32 utilisent la méme table de caractéres mais codent ceux-ci sur 16 et 32 bits (donc sont
plus gourmands en ressource).

