
Encodage des textes
Pour écrire du texte brut (c’est-à-dire sans aucun effet) on peut utiliser Notepad++ (windows), TextEdit
(MacOs), Kwrite ou Geany (Linux).
Fonctions Pyhton utiles : ord(), bin(), chr().

1 Norme ASCII
Avant 1960, chaque système codait à sa manière les informations (dont les caractères) ce qui se traduisait

par d’énormes problèmes de compatibilité et d’échange.
En 1960, l’organisation internationale de normalisation (ISO) décide de créer la norme ASCII (American
Standard Code for Information Interchange).
À chaque caractère est associé un nombre binaire sur 8 bits (1 octet).
Seuls 7 bits sont utilisés pour coder un caractère.
Les caractères en Ascii sont ainsi des octets dont le bit de poids fort est 0.
Avec 7 bits il est possible de coder jusqu’à 27=128 caractères ce qui est largement suffisant pour un texte écrit
en langue anglaise (pas d’accents et autres lettres particulières) :

Ainsi la lettre A est associée à 6510 = 010000012 et la lettre a est associée à 9710 = 011000012.
On retrouve ces valeurs avec Python :

>>>ord (’A’)
65
>>>bin (65)
’0 b1000001 ’

Exemple : La chaine de caractères "Yes !" se code 89 101 115 32 33 en décimal soit 01011001 01100101 01110011
00100000 00100001 en binaire.

1

2 Norme Latin
L’Ascii est idéal pour les pays anglo-saxons. Cependant, nous avons dans nos pays européens des caractères

particuliers, comme ç ou les caractères accentués. Pour coder ces caractères, on a étendu l’Ascii à la norme
ISO 8859-1 dit Latin-1. Le huitième bit de chaque octet a ainsi été utilisé. Plusieurs versions de cette norme
ont été créées dont la dernière, Latin-9, comprenant le symbole de l’euro e.
Problème, cette norme restait encore insuffisante au niveau international.

3 Norme Unicode
Pour résoudre ce problème, en 1991 une nouvelle norme a vu le jour : Unicode. Unicode a pour ambition

de rassembler tous les caractères existant afin qu’un texte codé dans cette norme puisse être lu dans n’importe
quel pays.

Unicode est uniquement une table qui regroupe tous les caractères existant au monde, il ne s’occupe pas
de la façon dont les caractères sont codés dans la machine.
Unicode accepte plusieurs systèmes de codage : UTF-8, UTF-16, UTF-32. Le plus utilisé, notamment sur le
Web, est UTF-8.

UTF-8 utilise un nombre variable d’octets : les caractères "classiques" (les plus couramment utilisés) sont
codés sur un octet, alors que des caractères "moins classiques" sont codés sur un nombre d’octets plus impor-
tant (jusqu’à 4 octets). Un des avantages d’UTF-8 c’est qu’il est totalement compatible avec la norme ASCII :
Les caractères Unicode codés avec UTF-8 ont exactement le même code que les mêmes caractères en ASCII.

Avec Python, UTF-8 est utilisé par défaut, et on a :
>>> ord(’Ê’)
202

On se retrouve donc avec un octet supérieur à 127 (le bit de poids fort est 1) : 11001010

En Python, la fonction chr() permet de traduire un code en caractère :
>>> chr(202)
Ê
Si on dispose du code binaire, on utilisera : chr(0b00100001) qui donne ’ !’

UTF-16 et UTF-32 utilisent la même table de caractères mais codent ceux-ci sur 16 et 32 bits (donc sont
plus gourmands en ressource).

2

