3) Architecture de Von Neumann

Dans le cours précédent, on a compris qu’un ordinateur est composé de 3 grands constituants :
- le processeur

- les mémoires

- les entrées-sorties (I/O= input/output)

Ces 3 constituants peuvent s’organiser de différentes facon dans un ordinateur.

Dans la configuration de Von Neumann, la mémoire de 1’ordinateur, dans laquelle sont stockées
les données, doit également servir a stocker les programmes.

Voici un schéma de 1’organisation de type Von Neumann d’un ordinateur :

]d——ﬁradnge — Unité centrale

[ ) [(ouprocesseur)  (Jp retrouve bien nos 3 parties (mémoire, processeur et
[”""’;‘g‘;gf:“ e — entrées-sorties). Ces composants communiquent grace a des
I [ bus (fleches rouges).

Mémoire

accumulateur

&
=N Sorties

Le processeur (CPU in English!) est constitué :
- d’une unité de commande ( aussi appelé unité de controle)
- d’une unité ariméthique et logique ( UAL )

4) Fonctionnement du processeur (voir aussi : " TP Von Neumann "

Revoir la vidéo de I’animation : https://www.youtube.com/watch?v=RISP6WA CI9k&t=68s
Site pour I’animation (activer flash) :http:/public.iutenligne.net/informatique/informatique-

industrielle/jacquemin/NAS MODULEb5/applications.html

Pour expliquer le fonctionnement d’un processeur, PROCESSEUR
on va utiliser I’image de I’animation flash du TP. COMPTEUR ORDINAL
Sur celle-ci ne sont pas représentées les entrées- REGISTRE  pEcoDEUR DINSTRUCTIONS

D'INSTRUCTIONS

sorties.

Cette représentation correspond bien a une
organisation " Von Neumann " puisque le
programme (colonne " Codes ") est bien stocké
dans la mémoire avec les données (2 données ici :
B3 et 1A).

a) role de I’'unité de commande (ou control unit)

Dans le processeur, I’unité de commande se charge de :
- mémoriser 1’adresse de la prochaine instruction a exécuter (compteur ordinal)
- décoder les instructions (registre d’instruction)
- gérer les mouvements de données entre la mémoire et 'UAL ( Lire (RD) ou écrire (WR)
ou autoriser (ALE))

Sur cet exemple, les instructions a décoder sont, dans 1’ordre : B6, BB, 48 et B7 qui signifient
respectivement : " lis la donnée a 1’adresse indiquée ", " additionne dans I’accumulateur ", " donne
le complément a 1 " (vous vous souvenez?), " écris la valeur de 1’accumulateur a I’adresse
indiquée ".

Remarque : I’accumulateur est un registre de I’UAL (voir ci-dessous)


http://public.iutenligne.net/informatique/informatique-industrielle/jacquemin/NAS_MODULE5/applications.html
http://public.iutenligne.net/informatique/informatique-industrielle/jacquemin/NAS_MODULE5/applications.html
https://www.youtube.com/watch?v=RlSP6WACI9k&t=68s

b) Role de I'unité arithmétique et logique (UAL)

L’unité arithmétique et logique (UAL) qui se trouve dans le processeur contient des circuits
logiques et des mémoires tres rapides appelés registres. Ce sont dans les registres que sont placées
les données (appelées opérandes). C’est sur ces données que I’'UAL va effectuer des opérations :

- mathématiques : additions, soustractions,...

- de comparaisons (égalité, inférieur, supérieur)

- sur les bits (compléments, décalages, rotations)

- de déplacements mémoire (copie de ou vers la mémoire)

5) Les limites du modéle de Von Neumann

Ce modele impose un va-et-vient constant des données ( data ou codes) entre le processeur
et la mémoire. Le probleme est que le temps d’accés aux données en mémoire est grand par rapport
au temps d’exécution des opérations par le processeur. Autrement dit, avec 1’organisation " Von
Neumann ", le processeur perd du temps a attendre les données.

Quelles solutions pour éviter cette perte de temps ? T —
- faire appel a des mémoires caches (voir cours précédent)
placées entre le CPU et la mémoire principale. Elles

MEMOIRE

meémorisent des données souvent utilisées. Elles sont moins
rapides que les registres mais plus rapides que la mémoire
principale. MEMOIRE

DE DONNEES

- utiliser des architectures paralléles : par exemple une
architecture dotée de plusieurs CPU qui exécutent chacun
un programme, de maniere indépendante, sur des données

différentes. Dans l'architecture de Harvard, les
mémoires d'instructions sont séparées des
mémoires de données
III Langage machine et assembleur

Dans I’animation précédente, les instructions (comme B3, BB), les données et les adresses étaient
représentées dans le systéme de numération hexadécimale. Cette représentation est utilisée pour
cette animation parce qu’elle est compacte et lisible mais ce n’est pas ce que " lit " I’ordinateur.

Un ordinateur ne " lit " que des informations codées en binaire : c’est le
langage machine. Toutes les instructions et données d’un programme chargé
dans le processeur sont des suites de 1 et de 0. Par exemple, pour le
processeur 8088 (processeur des années 80 qui a équipé I’IBM PC ),
I’instruction :

IBM PC
" écrit la valeur 18 dans le ler registre " s’écrit en langage machine :" 1011 0 000 00010010 " :
1011 correspond a " déplacer " (MOV), 0 a " écrire ", 000 a " premier registre " et 00010010 a
n 18 n

Cette suite de 0 et de 1 est difficilement lisible pour un étre humain. Pour le rendre lisible, on a fait
correspondre a chaque code binaire une petite instruction comme MOV pour I’exemple précédent.
Un registre sera représenté par AX par exemple. L’ensemble de ces instructions constitue le langage
assembleur.

Le langage assembleur est une représentation lisible du langage machine. Il dépend du
processeur.

En TP, vous allez vous initier a I’assembleur avec une simulation (AMIL)



