ALGORITHMIQUE - Introduction

1 - Définition

Un algorithme décrit un processus permettant de résoudre un probléme.

Donald Knuth en 1964 donne les caractéristiques importante d'un algorithme :
¢ Un algorithme doit toujours se terminer en un nombre fini d'étapes
* Chaque étape d'un algorithme doit étre décrit précisémment, sans ambiguité
e Un algorithme a des entrées (0 ou plus)

e Un algorithme a une ou plusieurs sorties qui ont une relation spécifiée avec les
entrées

e Les instructions doivent étre suffisamment basiques pour pouvoir étre exécutées de
maniere exacte, en un temps fini, par une personne utilisant un papier et un crayon

On utilisera le langage naturel pour la description d'un algorithme et leur traduction dans
un langage de programmation permettra de vérifier certaines notions : nombres
d'opérations-étapes effectuées (colt), correction, terminaison (validité).

2 - Un exemple

Prenons un algorithme pas trés récent (on remonte a I'Antiquité vers 300 avant JC) :
I'algorithme d'Euclide.

Son objectif est de déterminer le PGCD de deux entiers naturels. On verra que les
algorithmes ne s'appliquent pas qu'a des situations mathématiques (heureusement ?).

En langage naturel :

° Soit m et n deux entiers naturels, m >= n
Etape 1 : on divise m par n (division entiere) en notant r le reste
(@<=r<n)

Etape 2 : si r=0, terminé, le pgcd est n
Etape 3 : sinon on remplace m par n et n par r et on recommence
1'étape 1

1. Teste cet algorithme a la main pour m = 686 et n= 56.

En Python :

o def pgcd(m,n):
r=msn
while r>0:

m=n

n=r

r=msn
return n

2. Teste ce programme et vérifie les valeurs précédentes.

En javascript :

o function pgcd(var m:int,var n:int){
var r=m%n
while r>0 {
m=n
n=r
r=ms%n
b

return n

3 - Colt

Connaitre un algorithme permet de déterminer le nombre d'opérations, de comparaisons,
d'affectations ... donc le nombre d'instructions réalisées.

Bien souvent, on déterminera un encadrement de ce cot, le co(t exact dépendant des
valeurs en entrées.

Avec l'algorithme d'Euclide, une mesure du codt est par exemple le nombre de divisions
effectuées :

1. pour 686 et 56, détermine le nombre de divisions utilisées
2. pour 685 et 2, détermine le nombre de divisions utilisées

3. de maniere générale, trouve un majorant du nombre de divisions utilisées avec
I'algorithme d'Euclide

4 - Compteur

Une fois un algorithme programmé dans un langage, on peut ajouter un ou des compteurs
au sein des boucles pour récupérer le nombre d'opérations, comparaisons ... effectuées .

1. Teste le programme suivant :

o def pgcd2(m,n):
r=ms%n
compteur=1
while r>0:
m=n
n=r
r=mo%n
compteur=compteur+1
return n,compteur

2. Voici un autre algorithme :

o Soit a et b deux entiers naturels
Etape 1 : si a = b, on affiche a
Etape 2 : sinon si a>b alors on remplace a par a-b et si a<b alors on
remplace b par b-a et on recommence 1'étape 1

a. Traduis cet algorithme en Python
b. Teste ton programme avec a = 686 et b = 56. Explique le résultat.

c. Ajoute un compteur afin d'évaluer le nombre de soustractions.

5 - Terminaison

Un algorithme ne doit contenir qu'un nombre fini d'étapes : il doit se terminer quelques
soient les valeurs en entrées.

On doit donc vérifier la terminaison des algorithmes utilisés.
Dans le cas de l'algorithme d'Euclide, il s'agit de trouver le dernier reste non nul.

Avec les notations utilisées, ona 0 <=r < n <=m : les restes calculés sont une successsion
d'entiers strictement décroissante. Celle-ci se terminera forcément par zéro (on rentre
encore dans des considérations mathématiques) : I'algorithme d'Euclide se termine.

