Algorithmes gloutons

Certains problémes peuvent se résoudre en déterminant toutes les solutions possibles.

Celles-ci existent en général et on est alors amener & trouver la (les) meilleure(s) solution(s), si on a un
critére de comparaison distinguant une solution d’autre.

Prenons un jeu de 32 cartes classiques, chaque figure correspondant & un certain nombre de points, et on
tire une main en contenant 8.

Objectif : déterminer la meilleure main.

On a 32 x 31 x 30 x 29 x 28 x 27 x 26 x 25 = 424097856000 mains différentes possibles.

On calcule la valeur de chacune des mains et on récupére la plus grande valeur et la (les) main(s) associée(s).

Cette méthode est basée sur la force brute : elle génére un cotit algorithmique important (on est au-dela
des cotits polynomiaux).

Dans ce genre de situation, on privilégie en général une méthode itérative moins cotiteuse : on utilise un
algorithme glouton.

Dans notre cas, on prend une carte, celle ayant la plus grande valeur, puis la suivante avec le méme critere,
et ceci jusqu’a la huitiéme.

1 Principe

On considére un probléme d’optimisation dont on peut déterminer les solutions et pour lesquelles on
associe une valeur.

La premiére approche naive :

On cherche toutes les solutions ayant la valeur la plus intéressante, la valeur optimale.

La technique la plus simple consiste & énumérer toutes les solutions de maniére exhaustive, puis de choisir
la (les) meileure(s).

C’est une approche par force brute qui a un cott algorithmique trop important (en général, exponentiel).

Remarque : on retrouve cette complexité en cryptographie pour les mots de passe par exemple.

Une alternative est d’utiliser une méthode dite gloutonne :

— on va effectuer une succession de choix, chacun d’eux semblant étre le meilleur sur le moment (dans

notre exemple, choisir la carte restante de plus grande valeur) ;
— on résout donc un sous-probléme a chaque itération en créant une solution partielle, appelée solution
optimale ;

La méthode sera donc itérative et aboutira a une solution potentielle (dans notre exemple, une main avec
une valeur optimale).

La solution trouvée est-elle la meilleure ¢

On va voir que cela dépend.

Cette année, trois situations se résolvant par des algorithmes gloutons :

— Le rendu de monnaie (dans ce cours)

— Le voyageur de commerce (en TP)

— Le sac a dos (en TP)

2 Le rendu de monnaie

Vous étes au marché, on doit vous rendre 9 €.
On a a notre disposition (pour faire simple) des piéces de 1 et 2 €, des billets de 5 €.

Voila les solutions possibles :

— neuf piéces de 1

— sept piéces de 1 et une de 2

— cinq piéces de 1 et deux de 2

— trois piéces de 1 et trois de 2

— une piéce de 1 et quatre de 2

— un billet de 5 et quatre pieces de 1

— un billet de 5 et deux pieces de 1 et une de 2

— un billet de 5 et deux piéces de 2

On remarque ici que la valeur ne correspond pas & un critére de choix : on nous rend a chaque fois 9 €.

Par contre, pour le caissier le nombre de billets et de piéces rendus sont & minimiser : c’est la valeur a
optimiser dans ce probléme (c’est le dernier cas avec 3 piéces-billet).

De maniére général, le probléme est pour un montant donné de construire une liste de billets et
de piéces équivalent avec le minimum de piéces et billets.

La résolution dépend maintenant du systéme monétaire, autrement dit les piéces et billets disponibles. On
se place dans le cas ol pour notre systéme, tout est disponible ce qui revient a une liste :

listeM = [200,100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01]

Comme dans ’exemple, le principe est de chercher la monnaie & rendre en commencant par la plus grande
(sur le principe de la division) et on a l’algorithme suivant :

listeM = [200,100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01]
resultat =|[0]xlongueur (listeM)
1=0
Tant que montant >=0.01 faire
resultat [i]=quotient entier de montant par listeM [i]
montant=montant—resultat [i]*listeM [1]
1=1+1
Fin Tant que
retourner resultat

Si on reprend le cas du montant de 9 euros :

— resultat[i] = 0 pour i de 0 & 4 puisque 9<10

— on divise 9 par 5 : on obtient 1 quotient entier et resultat|5|=1

— il reste 4 euros

— on divise 4 par 2 : on obtient 2 quotient entier et resultat|6]=2

— il reste 0

— donc la condition de la boucle n’est plus vérifiée

— on obtient resultat = [0,0,0,0,0,1,2,0,0,0,0,0,0,0]

Remarque : la solution obtenue est optimale, on ne peut pas dans ce systeme en trouver de meilleure.
Cependant, si on change le systéme monétaire, on peut avoir des résultats non optimaux (voir exercice 1).

Exercice 1 : on crée dans notre systéme un billet de 7 euros. Montre qu’avec un montant de
14 €, la solution de I’algorithme n’est plus optimale

Exercice 2 : crée une fonction Python correspondant & ’algorithme et qui calcule en plus le
nombre de monnaies rendues. Tu documenteras ta fonction en y ajoutant 3 exemples dont un
avec des centimes.

