
Algorithmes gloutons
Certains problèmes peuvent se résoudre en déterminant toutes les solutions possibles.
Celles-ci existent en général et on est alors amener à trouver la (les) meilleure(s) solution(s), si on a un

critère de comparaison distinguant une solution d’autre.
Prenons un jeu de 32 cartes classiques, chaque figure correspondant à un certain nombre de points, et on

tire une main en contenant 8.
Objectif : déterminer la meilleure main.
On a 32× 31× 30× 29× 28× 27× 26× 25 = 424097856000 mains différentes possibles.
On calcule la valeur de chacune des mains et on récupère la plus grande valeur et la (les) main(s) associée(s).
Cette méthode est basée sur la force brute : elle génère un coût algorithmique important (on est au-delà

des coûts polynomiaux).
Dans ce genre de situation, on privilégie en général une méthode itérative moins coûteuse : on utilise un

algorithme glouton.
Dans notre cas, on prend une carte, celle ayant la plus grande valeur, puis la suivante avec le même critère,

et ceci jusqu’à la huitième.

1 Principe
On considère un problème d’optimisation dont on peut déterminer les solutions et pour lesquelles on

associe une valeur.
La première approche naïve :
On cherche toutes les solutions ayant la valeur la plus intéressante, la valeur optimale.
La technique la plus simple consiste à énumérer toutes les solutions de manière exhaustive, puis de choisir

la (les) meileure(s).
C’est une approche par force brute qui a un coût algorithmique trop important (en général, exponentiel).
Remarque : on retrouve cette complexité en cryptographie pour les mots de passe par exemple.
Une alternative est d’utiliser une méthode dite gloutonne :
— on va effectuer une succession de choix, chacun d’eux semblant être le meilleur sur le moment (dans

notre exemple, choisir la carte restante de plus grande valeur) ;
— on résout donc un sous-problème à chaque itération en créant une solution partielle, appelée solution

optimale ;
La méthode sera donc itérative et aboutira à une solution potentielle (dans notre exemple, une main avec

une valeur optimale).
La solution trouvée est-elle la meilleure ?
On va voir que cela dépend.
Cette année, trois situations se résolvant par des algorithmes gloutons :
— Le rendu de monnaie (dans ce cours)
— Le voyageur de commerce (en TP)
— Le sac à dos (en TP)

2 Le rendu de monnaie
Vous êtes au marché, on doit vous rendre 9 e.
On a à notre disposition (pour faire simple) des pièces de 1 et 2 e, des billets de 5 e.
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Voilà les solutions possibles :
— neuf pièces de 1
— sept pièces de 1 et une de 2
— cinq pièces de 1 et deux de 2
— trois pièces de 1 et trois de 2
— une pièce de 1 et quatre de 2
— un billet de 5 et quatre pièces de 1
— un billet de 5 et deux pièces de 1 et une de 2
— un billet de 5 et deux pièces de 2
On remarque ici que la valeur ne correspond pas à un critère de choix : on nous rend à chaque fois 9 e.
Par contre, pour le caissier le nombre de billets et de pièces rendus sont à minimiser : c’est la valeur à

optimiser dans ce problème (c’est le dernier cas avec 3 pièces-billet).
De manière général, le problème est pour un montant donné de construire une liste de billets et

de pièces équivalent avec le minimum de pièces et billets.
La résolution dépend maintenant du système monétaire, autrement dit les pièces et billets disponibles. On

se place dans le cas où pour notre système, tout est disponible ce qui revient à une liste :
listeM = [200,100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01]
Comme dans l’exemple, le principe est de chercher la monnaie à rendre en commençant par la plus grande

(sur le principe de la division) et on a l’algorithme suivant :

l i s t eM = [ 2 0 0 , 1 0 0 , 5 0 , 2 0 , 1 0 , 5 , 2 , 1 , 0 . 5 , 0 . 2 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 ]
r e s u l t a t =[0]∗ longueur ( l i s t eM )
i=0
Tant que montant>=0.01 f a i r e

r e s u l t a t [ i ]= quot i ent e n t i e r de montant par l i s t eM [ i ]
montant=montant−r e s u l t a t [ i ]∗ l i s t eM [ i ]
i=i+1

Fin Tant que
r e tou rne r r e s u l t a t

Si on reprend le cas du montant de 9 euros :
— resultat[i] = 0 pour i de 0 à 4 puisque 9<10
— on divise 9 par 5 : on obtient 1 quotient entier et resultat[5]=1
— il reste 4 euros
— on divise 4 par 2 : on obtient 2 quotient entier et resultat[6]=2
— il reste 0
— donc la condition de la boucle n’est plus vérifiée
— on obtient resultat = [0,0,0,0,0,1,2,0,0,0,0,0,0,0]
Remarque : la solution obtenue est optimale, on ne peut pas dans ce système en trouver de meilleure.

Cependant, si on change le système monétaire, on peut avoir des résultats non optimaux (voir exercice 1).

...............

Exercice 1 : on crée dans notre système un billet de 7 euros. Montre qu’avec un montant de
14 e, la solution de l’algorithme n’est plus optimale

Exercice 2 : crée une fonction Python correspondant à l’algorithme et qui calcule en plus le
nombre de monnaies rendues. Tu documenteras ta fonction en y ajoutant 3 exemples dont un
avec des centimes.
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