Algorithmes de tri

On voit dans ce cours 2 algorithmes permettant de trier une liste.
Le tri est une opération indispensable dans beaucoup de domaines tels les statistiques, la gestion des bases
de données ...
Pour une liste en Python, la méthode sort() existe et est trés performante. Cependant comprendre comment
s’effectue un tri est un exercice pertinent car les contraintes de résolution se retrouvent dans beaucoup de
problémes.
De plus, les méthodes de résolution de tri sont souvent trés différentes et peuvent avoir des coftits tout aussi
différents.
Les deux méthodes au programme sont le tri par sélection et le tri par insertion.
On prendra dans la suite les tris par ordre croissant.
Pour avoir une représentation concréte des tris les plus courants ainsi que les implémentations dans différents
langages :
http ://lwh.free.fr /pages/algo/tri/tri.htm

1 Tri par sélection

a Principe

Ce tri est facile a comprendre : on prend le plus petit élément de la liste et on ’échange avec le premier
élément de la liste, on prend ensuite 1’élément le plus petit dans le reste de la liste et on I’échange avec le
deuxiéme élément et ainsi de suite jusqu’a arriver au dernier élément de la liste qui sera le plus grand.

On doit se servir d’'une fonction permettant d’échanger deux éléments d’une liste listA :

def echange(listA ;i,j):
temp=listA [i|
listA[i|=1listA [j]
listA [j|=temp

b Algorithme

On va ainsi réaliser une boucle en prenant tous les éléments de la liste consécutivement, en effectuant a
chaque itération le remplacement de 1’élément correspondant a cette itération par le plus petit élément présent
dans le reste de la liste, donc pour cela aussi une boucle.

Langage naturel
Pour i allant de 0 a longueur de la liste listA -1 faire
min=i
Pour j allant de i+1 a longueur de la liste listA -1 faire
Si listAfj]<listA[m] alors m=j
Fin Pour
Echanger les éléments d’indice i et m
Fin Pour



Langage Python

for i in range(len(listA)):
min—i
for j in range(i+1,len(listA)):
if listA[j]<listA [min]:
min—=j
echange (listA ,i,min)

¢ Invariant de boucle

Il s’agit de déterminer une propriété vraie avant et aprés chaque itération dans la boucle. Il y a deux boucles
imbriquées : il s’agit donc de trouver cette propriété suivant la boucle principale, la deuxiéme permettant de
déterminer 'indice du plus petit élément d’'une partie de la liste (déja fait dans le précédent chapitre sur la
recherche d’un extremum).

Pour une itération donnée, au rang i, on a la situation suivante avant passage dans la boucle :

0 1
Partie triée | Partie non triée

Apreés passage, on se retrouve avec cette situation :

0 i+1
Partie triée | Partie non triée

On peut décrire cette situation par : Les © premiers éléments de la liste sont triés, les suivants étant
constitués d’éléments plus grands.

Il s’agit de 'invariant de boucle pour cette algorithme, justifiant la terminaison de I’algorithme : quand i
prend la derniére valeur len(listA)-1, on se retrouve avec une partie gauche triée contenant tous les éléments
de la liste (la partie droite devenue vide), ce qui est le résultat attendu.

d Coit de l'algorithme

Dans cette algorithme, les manipulations de données se font essentiellement par des comparaisons (on a a
effectuer aussi des échanges de valeurs mais on verra que leur nombre est négligeable) : on retiendra donc ce
nombre de comparaisons pour évaluer le cotit d’'un algorithme de tri.

Notons n le nombre d’éléments de la liste.
Pour le tri par selection,

a l'indice 0, on effectue n — 1 comparaisons
a 'indice 1, on effectue n — 2 comparaisons
a 'indice 2, on effectue n — 3 comparaisons

a l'indice n — 2, on effectue 1 comparaison

a 'indice n — 1, on effectue 0 comparaison

-1 2
Autotal,onadoncn—1+n—2+n—3+...—|—1+0:%:n——

2
On a obtenu une expression du second degré : on dit que le coiit est quadratique.
On aura par exemple besoin de faire 49995000 comparaisons pour trier une liste de 10000 éléments.

n



2 Tri par insertion

a Principe

Ce tri est assez similaire au précédent au sens ou l'invariant de boucle est quasi identique et le principe
repose aussi sur des échanges d’éléments consécutifs & des comparaison.
Le tri par insertion est celui dit des joueurs de cartes :
on prend les deux premiers éléments, on place correctement le deuxiéme c’est-a-dire on I’échange avec le
premier si celui-ci est plus grand ;
on prend ensuite le troisiéme élément et on le place de maniére que les trois premiers éléments soient ordonnés;
on continue le processus jusqu’au dernier : on I'insére au bon endroit dans la partie ordonnée (en décalant les
éléments qui suiventpour garder I'ordre).

b Algorithme

On effectue une boucle pour prendre en considération chaque élément de la liste et ensuite une boucle pour
comparer cet élément a chaque élément de la partie déja triée (avant cet élément) : on pourra donc utiliser
une boucle non bornée Tant Que afin de diminuer éventuellement le nombre de comparaisons.
Langage naturel
Pour i allant de 1 a longueur de la liste listA -1 faire
element=listA[if
J=t
Tant que j>0 et element<listAfj-1] Faire
listA[j]=listA[j-1]

J=J-1
Fin Tant Que
listA[j]=element
Fin Pour
Langage Python
for 1 in range(1l,len(listA)):
element=listA [1i]
j=i
while j>0 and element<listA [j—1]:
listA[j]=1listA [j—1]
J=i—1
list A [j|=element

¢ Invariant de boucle

Il y a aussi deux boucles imbriquées : il s’agit donc de trouver cette propriété suivant la boucle principale,
la deuxiéme permettant d’insérer un élément a sa place dans une sous-liste triée.
Pour une itération donnée, au rang i, on a la situation suivante avant passage dans la boucle :

listA[O :i| est composé des i premiers éléments de listA triés

Apreés passage, on se retrouve avec i-+1 éléments puisque 'on a inséré le iéme élément de maniére ordonné
parmi les i autres déja présent :

listA[0 :i+1] est composé des i+1 premiers éléments de listA triés

3



On peut décrire cette situation par : Les © premiers éléments de la liste sont triés

Il s’agit de 'invariant de boucle pour cette algorithme, justifiant la terminaison de l’algorithme : quand i
prend la derniére valeur len(listA)-1, on se retrouve avec une liste complétement triée, ce qui est le résultat
attendu.

d Coit de I'algorithme

Dans cette algorithme, les manipulations de données se font essentiellement par des comparaisons présents
dans la deuxiéme boucle (ou il y a deux comparaisons) : on retiendra donc ce nombre de comparaisons pour
évaluer le cotit de I'algorithme.

Dans la boucle Tant Que, on a plusieurs possibilités : au mieux on effectue que deux comparaisons (1’élément
au rang i est plus grand que les autres), au pire il est inférieur a tous les autres et on effectue 2i comparaisons,
et on a toutes les autres cas intermédiaires possibles suivant la composition de la liste a trier : le cotit n’est
pas fixe.

Notons n le nombre d’éléments de la liste.

La boucle principale commence a l'indice 1.

Pour le tri par insertion,

a 'indice 1, on effectue 2 comparaisons

a 'indice 2, on effectue 2 ou 4 comparaisons

a 'indice 3, on effectue 2, 4 ou 6 comparaisons

a l'indice n — 2, on effectue 2 & 2(n — 2) comparaisons

a l'indice n — 1, on effectue 2 a 2(n — 1) comparaisons

Au total, on a donc :

au mieux 2(n — 1) = 2n — 2 comparaisons

aupire 2x 1+2x2+4+2x3+...42(n—2)+2(n—1) =2(1+24+3+..+(n—2)+(n—1)) =n(n—1) =n*—n
comparaisons.

Le cotit n’est pas fixe.

Dans le meilleur des cas, il est linéaire, mais cela signifie que la liste a trier est ... déja trié.

Dans le pire des cas, il est quadratique, et ce pire des cas a lieu lorsque la liste est ... triée par ordre décrois-
sant.

Pour tous les cas, on pourrait estimer le cotit moyen en faisant une moyenne des deux formules obtenues, on

obtient :
n? n no_g
2 2 .

soit un coiit quadratique.

Le cotit de ces deux algorithmes sont globalement similaires : d’autres algorithmes comme le tri rapide ont
un coiit moindre que quadratique (et plus que linéaire). Pour de grandes listes (par exemple dans les bases
de données), avoir le meilleur (donc le moindre) cotit est indispensable pour la réalisation des processus.



