
Algorithmes de base : parcours d’un tableau
On voit dans ce cours 3 algorithmes élémentaires dans le détail présents dans le programme.

On donnera pour chacun son énoncé en langage naturel et sa traduction en Python.

1 Recherche d’un élément
Il s’agit de déterminer l’occurrence (la présence ou non) d’un élément de type quelconque (int, float, str,

tuple,list ...) dans un tableau (en général une liste mais cela peut être aussi un tuple, un dictionnaire, une
chaîne de caractère).

Langage naturel
monElement est l’élément à trouver
Pour chaque element du tableau faire
si element = monElement alors Retourner vrai
Fin Pour
Retourner faux

Langage Python

de f r echerche (tab leau) :
f o r element in tab leau :

i f e lement == monElement :
r e turn True

re turn Fa l se

Pour le coût, on utilise le nombre de comparaisons.
En notant n le nombre d’éléments du tableau, au mieux on effectue une seule comparaison, le premier élément
est celui cherché, au pire on effectue n comparaisons, le dernier élément est celui cherché ou il n’est pas présent
dans la liste.
Le coût est donc au pire linéaire.

Une question importante en informatique est "l’algorithme se termine-t-il ?".
On parle de terminaison.
L’algorithme de recherche donné repose sur l’utilisation d’une boucle : celle-ci se réalise pour tout tableau (le
nombre d’itération maximal est la taille de ce tableau) donc l’algorithme de recherche se termine.

2 Recherche d’un extremum
On veut déterminer le plus grand élément (maximum) et/ou le plus petit élément (minimum) dans un

tableau.

Langage naturel
min = max = premier élément du tableau
Pour chaque element du tableau faire
si element > max alors max = element
si element < min alors min = element
Fin Pour
Retourner min,max

Langage Python

de f extremum(tab leau) :
min=max=tab leau [0]
f o r element in tab leau :

i f e lement > max :
max=element

i f e lement < min :
min=element

re turn min ,max

1

Pour le coût, on utilise le nombre de comparaisons.
En notant n le nombre d’élément du tableau, on effectue à chaque passage dans la boucle 2 comparaisons.
Le coût est alors 2n donc linéaire.

L’algorithme de recherche donné repose sur l’utilisation d’une boucle : celle-ci se réalise pour tout tableau
(le nombre d’itération est la taille de ce tableau) donc l’algorithme de recherche d’extremum se termine.

3 Calcul de la moyenne
L’algorithme ici est assez connu, il trouve sa place ici car il contient aussi le parcours d’un tableau non

vide.
Bien entendu, les valeurs du tableau sont ici des entiers ou décimaux.

Langage naturel
total=0
Pour chaque element du tableau faire
total=total+element
Fin Pour
Retourner total/taille du tableau

Langage Python

de f moyenne (tab leau) :
t o t a l=0
f o r element in tab leau :

t o t a l=t o t a l+element
re turn t o t a l / l en (tab leau)

Pour le coût, on utilise le nombre d’opérations.
En notant n le nombre d’élément du tableau, on effectue n additions dans la boucle et une division.
Le coût est alors n+1 donc linéaire (on pourra mathématiquement préciser affine mais le terme informatique
est linéaire).
On utilise une boucle : celle-ci se réalise pour tout tableau (contenant des nombres entiers ou décimaux) donc
l’algorithme de calcul de la moyenne se termine.

4 Variant et invariant
On a vu dans les trois cas la notion de terminaison. Cependant, une autre question fondamentale est

l’algorithme donne-t-il à chaque fois le résultat attendu ?.
Pour justifier qu’un algorithme donne bien le résultat désiré, on aura souvent à effectuer une démonstration
comme en mathématiques, et on aura besoin de certains outils.
La particularité des algorithmes précédents est l’utilisation d’une boucle.
Le variant d’une boucle est un élément qui est modifié à chaque passage dans la boucle : dans nos
trois algorithmes, le variant est l’élément du tableau de rang l’itération de la boucle (tableau[0],tableau[1]...).
L’invariant d’une boucle est une propriété qui est vrai avant et après chaque passage dans la
boucle : cette notion est plus complexe car il s’agit de trouver avant tout cette propriété. Celle-ci est en lien
avec l’objectif de l’algorithme.
Pour le premier, l’invariant est le test element==monElement où element est le terme donné du tableau à
chaque itération, on a une propriété qui donne vrai ou faux.
Pour le deuxième, l’invariant est donné par le couple (min=plus petit élément parmi tableau[0] jusque tableau[i-
1], max=plus grand élément parmi tableau[0] jusque tableau[i-1]) où i est le rang de element.
Pour le troisième, l’invariant est total = somme des éléments du tableau du rang 0 jusque i-1 où i est le rang
de element.

2

